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Abstract Magnetic ordering at low temperature for Ising ferromagnets manifests itself
within the associated Fortuin–Kasteleyn (FK) random cluster representation as the occur-
rence of a single positive density percolating network. In this paper we investigate the per-
colation signature for Ising spin glass ordering—both in short-range (EA) and infinite-range
(SK) models—within a two-replica FK representation and also within the different Chayes–
Machta–Redner two-replica graphical representation. Based on numerical studies of the ±J

EA model in three dimensions and on rigorous results for the SK model, we conclude that
the spin glass transition corresponds to the appearance of two percolating clusters of unequal
densities.

Keywords Ising spin glass · Percolation · Graphical representations · Cluster algorithms ·
Fortuin–Kasteleyn

1 Introduction

Ising type spin glass models, both of the short-range Edward–Anderson (EA) [1] and the
infinite-range Sherrington–Kirkpatrick (SK) [2] varieties, have been studied for decades
(for some recent reviews, see [3] and [4]). Nevertheless, to a large extent, they remain a
mystery—especially the short-range variety, with competing views as to the nature of their
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ordered phases at low temperature T [3–5]. Indeed, from the perspective of rigorous re-
sults, it is striking that there is no proof of broken symmetry (e.g., of a nonzero EA order
parameter) for any dimension d or temperature T .

Graphical representations such as the Fortuin–Kasteleyn (FK) random cluster model [6,
7] are important tools in the study of spin systems. They relate correlations in spin systems
to geometrical properties of associated random graphs. Graphical representations are useful
in obtaining rigorous results concerning spin systems (e.g., [8, 9]), they yield geometric
insights into the nature of phase transitions and they are the basis for powerful Monte Carlo
methods for simulating phase transitions [10–12]. However, graphical representations have,
thus far, played a much less important role in the study of spin glasses than they have for
ferromagnets.

In this paper, we investigate two different graphical representations—the two-replica
graphical representation of Chayes, Machta and Redner (CMR) [13, 14] and a two-replica
version of the FK representation (see Sect. 4.1 of [15]). Our purpose is to understand the
“percolation signature” of spin glass ordering within these graphical representations. For
ferromagnets, ordering corresponds to the occurrence of percolating networks or clusters in
the single replica version of the FK representation. As we shall explain, we believe we have
elucidated the somewhat more complicated percolation signature for spin glasses.

This should help in understanding better the differences between the nature of the phase
transition in ferromagnets and in spin glasses. It is also our hope that for short-range models,
this will be a significant step towards developing a rigorous proof for spin glass ordering and
eventually lead to a clean analysis of the differences between short- and infinite-range spin
glass ordering.

Understanding the percolation signature for spin glasses requires two ingredients beyond
what is needed for ferromagnets. The first is the need to consider percolation within a two-
replica representation. As mentioned, we consider two different such representations—one
is the percolation of a certain class of bonds (these are the “blue bonds” introduced and
explained in Sect. 2.2 below) in the CMR two-replica graphical representation and the other
is percolation of bonds that are doubly FK occupied—i.e., occupied in both replicas—in the
two-replica Fortuin–Kasteleyn (TRFK) representation. The two different types of percola-
tion, which we will often refer to simply as CMR and TRFK percolation, give relatively
similar (but not identical) results, with the major qualitative distinction occurring within the
SK spin glass.

The second ingredient, initially unexpected by us but in retrospect rather natural, is that
spin glass ordering corresponds to a more subtle percolation phenomenon than simply the
appearance of a percolating cluster—one that involves a pair of percolating clusters. In the
case of a ferromagnet, there are general theorems [16] which ensure that when percolation
occurs, there is a unique percolating cluster, whether in single or double replica represen-
tations. It is also possible (by averaging over disorder realizations) to show (see, e.g., [17]
and [15]) that the same conclusions are valid in the single replica FK representation of spin
glasses. However for blue bond percolation in the (two-replica) CMR representation of spin
glasses, both our numerical evidence for the d = 3 EA model and our rigorous results for
the SK model (in the CMR representation) show that at temperatures well above the spin
glass transition, there already is percolation, but that there are two percolating networks
which are equal in density (and presumably otherwise macroscopically indistinguishable).
The SG transition corresponds to the breaking of indistiguishability between the two perco-
lating networks—in particular by having a nonzero difference in densities. The latter feature
also occurs for doubly occupied bonds in the TRFK representation of the SK model, ex-
cept that in that representation there are no percolating networks at all above the transition
temperature.
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It may be worth noting that a similar breaking of indistinguishability occurs in the ho-
mogeneous ferromagnet if one focuses on percolation of satisfied bonds (or equivalently,
like spins) in a single replica. In dimensions three or more at infinite temperature, there are
two percolating clusters of equal density (because on those lattices the critical density for
independent site percolation is below 1/2). If just below the critical temperature the minor-
ity spin percolates within a magnetized phase (and this is rigorously known to occur for
sufficiently large d [18]) then there would be two percolating but distinguishable clusters.
At the end of Sect. 4, we show some numerical results concerning this phenomenon in the
three-dimensional ferromagnet.

From a numerical perspective, spin glasses also pose major challenges. Some of the nu-
merical techniques, e.g., that of Swendsen and Wang (SW) [11] based on graphical repre-
sentations, such as that of Fortuin and Kasteleyn [6, 7], which have proven so useful for
ferromagnets, are in principle applicable to spin glasses. However, they are very inefficient
in practice for values of d and T where ordering is believed to occur. The CMR graphi-
cal representation is related to a two-replica algorithm originally introduced by Swendsen
and Wang [19–21] and developed by these and other authors [22–25]. These authors have
shown that algorithms incorporating two-replica cluster moves are somewhat useful in sim-
ulating spin glasses. In particular, Jörg [24, 25] has shown that an algorithm based on a
two-replica representation performs reasonably efficiently for diluted spin glass models in
three dimensions. Two-replica cluster methods have also been successfully applied to Ising
systems in a staggered field [14] and to the random field Ising model [26]. The Monte Carlo
method that we use takes advantage of the full set of moves allowed by the CMR graphical
representation. These moves are a superset of the moves used in [19–21, 23–25].

The paper is organized as follows. In Sect. 2 we introduce the idea of graphical repre-
sentations, describe the CMR and TRFK two-replica graphical representations and present
properties of these representations. In Sect. 3 we analyze both two-replica representations
on the complete graph—i.e., for the SK spin glass. In Sect. 4 we present numerical results
for the three-dimensional EA model. The paper concludes with a discussion.

2 Graphical Representations for Spin Glasses

2.1 Fortuin–Kasteleyn Graphical Representation

Graphical representations for the Ising model originated with the work of Fortuin and Kaste-
leyn [6, 7]. They were re-discovered and given a physical interpretation by Coniglio and
Klein [27], applied as the basis of a powerful algorithm for simulating the Ising model by
Swendsen and Wang [19–21] and then reformulated as a joint spin-bond distribution by Ed-
wards and Sokal [22]. Edwards and Sokal introduced a joint distribution of spin variables
{σx} and bond variables {ωxy}. Here {x} represents the set of sites (vertices) of an arbitrary
lattice (graph) and {xy} the set of bonds (edges). The Ising spin variables take values ±1
and the bond variables take values 0 or 1, or “unoccupied” and “occupied”, respectively. The
statistical weight W for the Edwards–Sokal distribution is

W(σ,ω;p) = p|ω|(1 − p)Nb−|ω|Δ(σ,ω). (1)

Here |ω| = ∑
{xy} ωxy is the number of occupied bonds and Nb is the total number of bonds

on the lattice. The factor Δ(σ,ω) is defined by,

Δ(σ,ω) =
{

1 if for every xy: ωxy = 1 → σxσy = 1,

0 otherwise.
(2)
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The Δ factor requires that every occupied bond is satisfied. Without the Δ factor we would
have independent Bernoulli percolation. Given the choice, p = PFK(β) = 1 − exp(−2βJ ),
it is easy to verify that the spin and bond marginals of the Edwards–Sokal distribution are
the ferromagnetic Ising model with coupling strength J and the Fortuin–Kasteleyn random
cluster model, respectively.

Bond and spin configurations in the ferromagnet contain essentially the same informa-
tion. For example, the spin-spin correlation function 〈σxσy〉 is equal to the probability that
sites x and y are connected by occupied bonds in the bond representation,

〈σxσy〉 = Prob{x and y connected}. (3)

This relationship implies that the phase transition in the spin system is accompanied by a
percolation transition in the bond system.

Given a typical equilibrium bond configuration one can construct a typical equilibrium
spin configuration by identifying connected components or clusters and independently pop-
ulating every spin in each cluster with one randomly chosen spin type. Similarly, given an
equilibrium spin configuration, an equilibrium bond configuration can be constructed by oc-
cupying satisfied bonds with probability PFK(β). The equivalence between spin and bond
configurations is the basis of the Swendsen–Wang algorithm, which proceeds by succes-
sively creating spin configurations from bond configurations and then bond configurations
from spin configurations. It is easy to verify that this algorithm is ergodic and satisfies de-
tailed balance with respect to the Edwards–Sokal distribution. Power law decay of spin cor-
relations at criticality imply via (3) that the connected components of bond configurations
at criticality have a power law distribution of sizes. The efficiency of the Swendsen–Wang
algorithm is due to the fact that the spin system is modified on all length scales in a single
step.

The FK representation is easily adapted to the ±J Ising spin glass. (With minor modifi-
cations, it can also be adapted to Gaussian and other distributions for the couplings, but we
will generally not consider those in this paper.) The corresponding Edwards–Sokal weight
is the same as given in (1). The Δ factor must still enforce the rule that all occupied bonds
are satisfied,

Δ(σ,ω;J ) =
{

1 if for every xy: ωxy = 1 → Jxyσxσy = 1,

0 otherwise.
(4)

The spin marginal of the corresponding Edwards–Sokal distribution is the Ising spin glass
with couplings {Jxy}. Unfortunately, the relationship between spin-spin correlations and
bond connectivity is complicated by the presence of antiferromagnetic bonds. Specifically,
one has

〈σxσy〉 = Prob{x and y connected by even number of antiferromagnetic bonds}
− Prob{x andy connected by odd number of antiferromagnetic bonds}. (5)

It is no longer the case that the percolation of FK bonds implies long range order [28]. Two
spins separated by a large distance may usually be connected by occupied bonds but still
be uncorrelated because half the time the connection has an even number of antiferromag-
netic bonds and half the time an odd number of antiferromagnetic bonds. Indeed, FK bonds
percolate at a temperature that is well above the spin glass transition temperature. For the
three-dimensional Ising spin glass on the cubic lattice Fortuin–Kasteleyn bonds percolate
at βFK,p ≈ 0.26 [29] while the inverse critical temperature is βc = 0.89 ± 0.03 [30]. Near
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the spin glass critical temperature, the giant FK cluster includes most of the sites of the sys-
tem. For this reason, the Swendsen–Wang algorithm, though valid, is quite inefficient for
simulating spin glasses.

2.2 The CMR Two-Replica Graphical Representation

A conceptual difficulty of using the Fortuin–Kasteleyn representation to understand spin
glass ordering is that FK clusters identify magnetization correlations but the spin glass order
parameter is not the magnetization. Spin glass order is manifest in the Edwards–Anderson
order parameter, which can be defined with respect to two independent replicas of the sys-
tem, each with the same couplings {Jxy}. The spins in the two replicas are {σx} and {τx},
respectively, each taking values ±1. The Edwards–Anderson order parameter, qEA, is de-
fined in terms of the overlap,

Q = Ns
−1

∑

{x}
σxτx, (6)

in the limit as the number of sites Ns → ∞. In general, Q is a random variable whose
maximum possible value is qEA, but in the case where (in the limit Ns → ∞) {σx} and {τx}
are drawn from a single pure state, Q takes on only the single value qEA.

The two-replica graphical representation, introduced in [13, 14], explicitly relates spin
glass order to geometry. The associated Edwards–Sokal joint distribution has, in addition to
the spin variables, {σx} and {τx}, two types of bond variables ωxy and ηxy each taking values
in {0,1}.

The Edwards–Sokal weight is

W(σ, τ,ω,η;J ) = Bblue(ω)Bred(η)Δ(σ, τ,ω;J )Γ (σ, τ, η) (7)

where the B’s are Bernoulli factors for the two types of bonds,

Bblue(ω) = P |ω|
blue(1 −Pblue)

Nb−|ω|, (8)

Bred(η) = P |η|
red(1 −Pred)

Nb−|η| (9)

and the bond occupation probabilities are

Pblue = 1 − exp(−4β|J |), (10)

Pred = 1 − exp(−2β|J |). (11)

The Δ and Γ factors constrain where the two types of occupied bonds are allowed,

Δ(σ, τ,ω;J ) =
{

1 if for every xy: ωxy = 1 → Jxyσxσy > 0 and Jxyτxτy > 0,

0 otherwise,
(12)

Γ (σ, τ, η) =
{

1 if for every xy: ηxy = 1 → σxσyτxτy < 0,

0 otherwise.
(13)

We refer to the ω occupied bonds as “blue” and the η occupied bonds as “red”. The Δ

constraint says that blue bonds are allowed only if the bond is satisfied in both replicas.
The Γ constraint says that red bonds are allowed only if the bond is satisfied in exactly one
replica.
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It is straightforward to verify that the spin marginal of the CMR Edwards–Sokal weight
is the weight for two independent Ising spin glasses with the same couplings,

∑

{ω}{η}
W(σ, τ,ω,η;J ) = const × exp

[

β
∑

{xy}
Jxy(σxσy + τxτy)

]

. (14)

2.3 Properties of Graphical Representations for Spin Glasses

Connectivity by occupied bonds in the CMR representation is related to correlations of the
local spin glass order parameter,

Qx = σxτx. (15)

It is straightforward to verify that

〈QxQy〉 = Prob{x and y connected by even number of red bonds}
− Prob{x and y connected by odd number of red bonds}. (16)

As in the case of the FK representation, a minus sign complicates the relationship between
correlations and connectivity but in a conceptually different way. The second term in (16)
is independent of the underlying coupling in the model and is present for both spin glasses
and ferromagnetic models.

In the case of a ferromagnet, having a percolating cluster (or clusters) in the (single
replica) FK representation easily shows that there is broken symmetry with respect to global
spin flips. For example, one can impose plus or minus boundary conditions on those bound-
ary spins belonging to FK percolating networks in the Edwards–Sokal joint spin-bond rep-
resentation and these two choices of boundary conditions give two different Gibbs states
for the spin system in the infinite volume limit. More simply, in the ferromagnetic case, the
magnetization order parameter equals the total density of the percolating network(s), since
finite FK clusters do not contribute.

We remark, as noted in Sect. 1, that for ferromagnets (in the absence of boundary condi-
tions that force interfaces), the signature of ordering is a single percolating cluster. For spin
glasses, the situation is analogous, but more complicated. If there is in the CMR graphical
representation a percolating blue cluster of strictly larger density than any other blue clus-
ters, one can similarly show broken symmetry. Here one can impose “agree” or “disagree”
boundary conditions between those σx and τx boundary spins belonging to the maximum
density blue network.1 In the infinite volume limit, these two boundary conditions give dif-
ferent Gibbs states for the σ -spin system (for fixed τ ) related to each other by a global spin
flip (of σ ). However, in this case, it is not so easy to rigorously relate (in general) the overlap
Q to the densities of percolating blue networks, even if one assumes that there are exactly
two such networks with densities D1 and D2. This is because in a two-replica situation, it
is not immediate that there is no contribution from finite (non-percolating) clusters, which
would be enough to imply that Q = D1 − D2. Nevertheless, this identity seems likely to be
the case, and indeed is valid for the SK model, as we discuss in the next section of the paper.

For the TRFK representation, similar reasoning shows that the occurrence of exactly two
doubly-occupied percolating FK clusters with different densities implies broken symmetry

1We remark that this is indeed a boundary condition because, in the infinite volume limit, determining which
boundary spins belong to the maximum density network does not use information from any fixed, arbitrarily
large, finite region.
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for the spin system [15] and that Q should equal (and does equal in the SK model) the
density difference. In Sect. 4.3 we will present preliminary numerical evidence that there is
such a nonzero density difference below the spin glass transition temperature for the d = 3
EA ±J spin glass (for both the TRFK and CMR representations).

3 The Spin Glass on the Complete Graph

The spin glass on the complete graph was introduced by Sherrington and Kirkpatrick
(SK) [2]. The ±J version of the model has couplings given by ±N−1/2 where N is the
number of vertices on the graph. This scaling for the coupling strength insures that the free
energy is extensive. In this section, we study the percolation properties of both the Fortuin–
Kasteleyn and CMR representations for the SK model. In the high temperature phase,
β < βc = 1, both the magnetization and the EA order parameter, qEA, vanish. The SK solu-
tion, valid for the high temperature phase, yields the energy per spin, u = −β/2. The number
of unsatisfied edges minus the number of satisfied edges is equal to uN3/2. Thus, letting fs

be the fraction of satisfied edges, we have that

fs ∼ 1

2
− uN−1/2. (17)

In the FK representation a fraction PFK = 1 − exp(−2βN−1/2) ≈ 2βN−1/2 of satisfied
edges are occupied. When will the occupied edges first form a giant cluster and how many
giant clusters will coexist? The theory of random graphs (see [31]) can be used to answer
these questions. It is known [32] that a giant cluster forms in a random graph of N vertices
when a fraction x/N of edges is occupied with x > 1, and that there is then a single giant
cluster. This suggests that (single replica) FK giant clusters should form with β = xN−1/2

when x > 1, i.e., that the single replica FK percolation threshold is at

βFK,p = N−1/2. (18)

It also suggests that above this threshold, there should be a single giant FK cluster.
Although the arguments just given are incomplete in that the satisfied edges were treated

(without justification) as though they were chosen independently of each other, nevertheless
the conclusions can be proved rigorously as we now explain. Indeed, our rigorous analysis of
the much more interesting cases with two replicas will use very similar arguments. The idea
is to obtain upper and lower bounds for the conditional probability that an edge {x0y0} is
satisfied, given the satisfaction status of all the other edges. If these bounds are close to each
other (for large N ) then treating the satisfied edges as though chosen independently can be
justified.

A key point is that because of frustration, such approximate independence is impossible
if one knows too much about the signs of the couplings. Thus, we will not condition on
the sign of the single coupling Jx0y0 —in fact we will consider precisely the conditional
probability of that sign given the configuration of all other couplings Jxy and all spins σx .
For the ±J model that we are considering, it is quite elementary to see first that the ratio
Z+/Z− for the partition functions with Jx0y0 = +N−1/2 and Jx0y0 = −N−1/2 satisfies

exp(−2βN−1/2) ≤ |Z+/Z−| ≤ exp(2βN−1/2), (19)
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and then that the conditional probabilities P± that Jx0y0 = ±N−1/2 given any configuration
of the other Jxy ’s and all σx ’s satisfy

e−4β/
√

N ≤ e−2β/
√

N |Z−/Z+| ≤ P+/P− ≤ e2β/
√

N |Z−/Z+| ≤ e4β/
√

N . (20)

It then follows that the conditional probabilities Ps or Pu for any edge {x0y0} to be satis-
fied or unsatisfied given the satisfaction status of all other edges satisfy

e−4β/
√

N ≤ Ps/Pu ≤ e4β/
√

N, (21)

so that

1

2
− O(β/

√
N) = (e4β/

√
N + 1)−1 ≤ Ps ≤ (e−4β/

√
N + 1)−1 = 1

2
+ O(β/

√
N). (22)

One now obtains rigorously the same conclusions as before—i.e., (18) is valid with a
single giant FK cluster for β = βN ≥ xN−1/2 with any x > 1. Before proceeding to our
detailed analysis of the situation with two replicas, we state our main conclusions.

The threshold for TRFK percolation is

βTRFK,p = 1. (23)

For β ≤ 1, there is no giant cluster (containing a strictly positive density, i.e., fraction of
sites). For β > 1 there are exactly two giant clusters with unequal densities. (Strictly speak-
ing, we do not rigorously rule out the possibility that for some choices of β > 1, there might
be only a single giant cluster, but we explain why that should not be so and also prove that a
nonzero spin-spin overlap rules out the possibility of two clusters of exactly equal density.)

The threshold for percolation of blue bonds in the CMR two-replica graphical represen-
tation is

βCMR,p = N−1/2. (24)

Only above that threshold are there one or more giant clusters. The number and density of
the giant clusters is determined by a second threshold which is exactly the SK spin glass
critical value βc = 1. For xN−1/2 ≤ βN ≤ 1 with x > 1, there are exactly two giant clusters,
which have equal densities; if N1/2βN → ∞, then the two densities are both exactly 1/2.
For βN ≥ x with any x > 1, there are two giant clusters of unequal densities, whose sum is
one. (Strictly speaking, as in the case of TRFK percolation, we do not rigorously rule out
the possibility that for some β > 1, there might be a single blue giant cluster, which would
necessarily have density one.)

Now we explain our analysis when there are two spin replicas σ and τ . For both TRFK
percolation and for blue percolation in the CMR graphical representation, we focus on dou-
bly satisfied edges. For the Fortuin–Kasteleyn representation, doubly satisfied edges are oc-
cupied with probability PTRFK = [1 − exp(−2βN−1/2)]2 ∼ 4β2/N . For the CMR represen-
tation, doubly satisfied edges are occupied with probability PCMR = 1 − exp(−4βN−1/2) ∼
4βN−1/2. The crucial new ingredient in two-replica situations is that an edge {xy} can be
doubly satisfied only if σxσyτxτy = +1 or equivalently if σxτx = σyτy (and then will be
satisfied for exactly one of the two signs of Jxy ). Thus, before proceeding as in the single
replica situation, we first divide all (σ, τ ) configurations into two groups or sectors—the
agree (where σx = τx ) and the disagree sectors (where σx = −τx ). We also denote by Na
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and Nd the numbers of sites in the sectors and denote by Da = Na/N and Dd = Nd/N the
sector densities (so that Da + Dd = 1). We note that the spin overlap Q is just

Q = 1

N

∑

x

σxτx = Na − Nd

N
= Da − Dd (25)

and that for β ≤ βc = 1, Q → 0 as N → ∞ while for β > βc = 1, Q is nonzero, e.g., in the
sense that Av(〈Q2〉) > 0 as N → ∞, where Av denotes the average over couplings.

We now proceed similarly to the single replica case, but separately within the agree and
disagree sectors. Letting P̄± denote the conditional probabilities that Jx0y0 = ±N−1/2 given
the other Jxy ’s and all σx ’s and τx ’s, we have within either of the two sectors that

e−8β/
√

N ≤ e−4β/
√

N |Z−/Z+|2 ≤ P̄+/P̄− ≤ e4β/
√

N |Z−/Z+|2 ≤ e8β/
√

N (26)

so that the conditional probability within a single sector Pds for x0y0 to be doubly satisfied
is (1/2)+ O(βN−1/2). For β ≤ βc , we have Da = 1/2, Dd = 1/2 (in the limit N → ∞) and
so in either sector, double FK percolation is approximately a random graph model with N/2
sites and bond occupation probability (1/2)4β2N−1 = β2(N/2)−1; thus double FK giant
clusters do not occur for β2 ≤ 1.

Blue percolation corresponds to bond occupation probability (1/2)4βN−1/2 = βN1/2 ×
(N/2)−1 and so the threshold for blue percolation is given by (24). But now there are two
giant clusters, one in each of the two sectors, and they are of equal density for β ≤ βc = 1
since Da = Dd . On the other hand, for β > βc , Da �= Dd and the two giant clusters will be
of unequal density. In fact, since βN1/2 → ∞ for β > βc (indeed for any fixed β > 0), it
follows from random graph theory that each giant cluster occupies the entire sector so that
Da and Dd are also the cluster percolation densities of the two giant clusters.

In the case of two-replica FK percolation for β > βc , let us denote by Dmax and Dmin

the larger and smaller of Da and Dd , so that Dmax + Dmin = 1 and Dmax − Dmin = Q.
Then for β > βc , the bond occupation probability in the larger sector is β2(N/2)−1 =
2β2Dmax(DmaxN)−1 with 2β2Dmax > 1 and there is a (single) giant cluster in that larger
sector. There will be another giant cluster (of lower density) in the smaller sector provid-
ing 2β2Dmin (= β2(1 − Q)) > 1. Since Q ≤ qEA, for this to be the case it suffices if for
β > βc,

qEA < 1 − 1

β2
. (27)

The estimated behavior of qEA both as β → 1+ and as β → ∞ [5] suggests that this is
always valid. In any case, we have proved that there is a unique maximal density double FK
cluster for β > βc .

4 Numerical Simulations

In this section we describe numerical simulations of the Edwards–Anderson spin glass in
three dimensions to test ideas about the percolation signature for spin glass ordering. For
comparison, we also describe simulations of spin clusters for the 3D ferromagnetic Ising
model.
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4.1 Methods

We carried out simulations of the ±J Ising spin glass using a Monte Carlo method that com-
bines CMR cluster moves, Metropolis sweeps and parallel tempering (replica exchange).
A similar scheme was used in a study of the random field Ising model [26]. The cluster
moves are closely related to the replica Monte Carlo algorithm introduced by Swendsen and
Wang [19–21] and developed in [23–25]. The combination of two-replica cluster moves and
parallel tempering was first introduced by Houdayer [23]. The new ingredient in the present
algorithm is that all of the degrees of freedom available in the CMR representation are used.
The additional degree of freedom is incorporated in “grey” moves, described below.

The parallel tempering component of the algorithm works with R pairs of replicas at
equally spaced inverse temperatures. Standard temperature exchange moves are carried out
between one of the two replicas at one temperature and at one of the neighboring tempera-
tures. The CMR cluster moves begin by identifying all singly and doubly satisfied bonds and
occupying them with probabilities, Pblue = 1− exp(−4β) and Pred = 1− exp(−2β), respec-
tively. Bonds that are not satisfied in either replica cannot be occupied. The occupied bonds
determine blue and grey clusters. Sets of sites connected by blue bonds and singletons are
considered to be blue clusters. Sets of sites connected by blue or red bonds are considered
to be grey clusters. The cluster moves proceed as follows. For each grey cluster a random
bit determines whether to perform a grey move or not. If a grey move is chosen, the sign of
Q in each blue cluster in the grey cluster is reversed. Next, a random bit determines which
of the two spin states to put each blue cluster in given its Q state. For example, if Q = 1 in
a given blue cluster then, with equal probability, the spin state of a given site in the cluster
is either (++) or (−−).

The two-replica cluster component of the algorithm satisfies detailed balance with respect
to the Edwards–Sokal weight for the CMR graphical representation. In addition, the two-
replica cluster component of the algorithm is, by itself, ergodic. There is a non-vanishing
probability that any given site is a singleton cluster and is flipped to any of the four spin
states. Thus, there is a non-vanishing probability of a transition from any spin configuration
for the pair of replicas to any other spin configuration in a finite number of steps. A single
pair of replicas will eventually approach equilibrium under two-replica cluster moves. How-
ever, for reasons that will become clear in Sect. 4.3, the equilibration by two-replica cluster
moves alone is very slow in three dimensions. Thus we supplement these moves with both
temperature exchange moves and Metropolis sweeps.

The presence of very long-lived metastable states makes it difficult to gauge whether
a spin glass simulation has reached equilibrium. Here we measure the time it takes for a
spin configuration, originally at the highest simulated temperature, to diffuse by replica
exchange moves, to the lowest temperature. If the entire set of replicas is in equilibrium and
if the replica pair at the highest temperature is rapidly equilibrated, then this first passage
time estimates the time it takes to obtain an independent sample at the lowest temperature.
We assume that the mean first passage time is comparable to the equilibration time for the
full set of replicas though it is conceivable that equilibration time is much longer than the
mean first passage time. For the 123 system, the largest system studied here, the mean first
passage time is of the order of one hundred MC sweeps and does not vary greatly from one
realization to another so we believe that the system is well equilibrated.

The two-replica cluster moves complicate the ability to keep track of a single spin con-
figuration as it diffuses in temperature space. If there are two giant clusters and, in one of the
replicas, both or neither of the giant clusters are flipped then the identity of the spin config-
uration is unaffected (though it may have suffered an overall spin flip). On the other hand, if
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one giant cluster is flipped and the other not then the spin configurations of the replicas are
swapped. Below the CMR percolation transition, this same rule is applied to the two largest
clusters but the identity of the spin configuration is effectively lost in one two-replica move.

4.2 Improved Estimators

One advantage of cluster algorithms in data collection is the existence of improved estima-
tors [12] in the graphical representation. For example, in the Swendsen–Wang algorithm,
one can obtain the magnetization and magnetic susceptibility from the cluster configura-
tions. The magnetization is the average size of the largest cluster and the susceptibility is
proportional to the sum of the squares of the cluster sizes. Since each occupied bond config-
uration corresponds to many spin configurations, the variance of observables measured from
the bond configurations is less than for the same observables measured in the spin configu-
ration leading to smaller error bars for the same amount of computational work. Improved
estimators exist within the CMR representation for the spin glass order parameter and sus-
ceptibility. For example, the order parameter Q can be obtained from the percolating grey
cluster if it exists and is unique. In particular, the local order parameter Qx summed over
the sites of the percolating grey cluster should equal the Q of the whole system since the
contributions of small grey clusters vanishes after averaging over the possible spin states of
these clusters.

4.3 Simulation results

We simulated the three-dimensional ±J Edwards–Anderson model on skew periodic cubic
lattices for system sizes 63, 83, 103 and 123. For each size we simulated 20 inverse tempera-
tures equally spaced in the range β = 0.16 to β = 0.92. Since there are two replicas for each
temperature, the total number of replicas simulated was 40. A recent estimate of the phase
transition temperature of the system is βc = 0.89 ± 0.03 [30]. For each size we simulated
100 realizations of disorder for 50,000 Monte Carlo sweeps of which the first 1/4 of the
sweeps were for equilibration and the remaining 3/4 for data collection. One Monte Carlo
sweep consists of a cluster move for the pair of replicas at every temperature, a Metropo-
lis sweep for each replica and a temperature exchange attempt for each temperature. The
quantities that we measure are the fraction of sites in the largest blue cluster, C1 and second
largest blue cluster, C2 and the number of blue CMR wrapping cluster, wCMR, and the num-
ber of TRFK “wrapping” clusters, wTRFK. A cluster is said to wrap if it is connected around
the system in any of the three directions.

Figure 1 shows the average number wCMR of CMR blue wrapping clusters as a function of
inverse temperature β . The curves are ordered by system size with largest size on the bottom

Fig. 1 Average number of
wrapping CMR clusters, wCMR
vs. β for the 3D EA model
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Fig. 2 Same as Fig. 1, magnified
near the CMR percolation
transition

Fig. 3 C1 (middle set), C2
(bottom set) and C1 + C2 (top
set) vs. β for the CMR graphical
representation for the 3D EA
model

for the small β and on top for the large β . The data suggests that there is a percolation tran-
sition at some βCMR,p . For β > βCMR,p there are two wrapping clusters while for β < βCMR,p

there are none. Near and above the spin glass transition at βc ≈ 0.89 the expected number
of wrapping clusters falls off but the fall-off diminishes as system size increases. This figure
suggests that in the large size limit there are exactly two spanning clusters near the spin
glass transition both above and below the transition temperature. Figure 2 is a magnification
of Fig. 1 near the CMR percolation transition. The crossing points identify the percolation
transition as βCMR,p ≈ 0.275. This value is close to the FK percolation transition for the ±J

EA model βFK,p ≈ 0.26 reported in [29]. A more careful study would be needed to test the
hypothesis that βCMR,p > βFK,p .

Figure 3 shows the fraction of sites in the largest CMR blue cluster, C1, second largest
CMR blue cluster, C2 and the sum of the two, C1 +C2. The middle set of four curves is C1 for
sizes 63, 83, 103 and 123, ordered from top to the bottom at β = 0.5. The bottom set of curves
is C2 with system sizes ordered from smallest on bottom to largest on top at β = 0.5. The
difference between the fraction of sites in the two largest clusters, C1 − C2 is approximately
the spin glass order parameter. As the system size increases, this difference decreases below
the transition suggesting that C1 = C2 for β < βc in the thermodynamic limit. On the other
hand, the sum of the two largest clusters is quite constant independent of system size. Near
the transition, approximately 96% of the sites are in the two largest clusters.

The large fraction of sites in the two largest clusters makes the CMR cluster moves inef-
ficient. If all sites were in the two largest clusters then the cluster moves would serve only to
flip all spins in one or both clusters or exchange the identity of the two replicas. Equilibra-
tion depends on the small fraction of spins that are not part of the two largest clusters. One
of the reasons that bond diluted spin glasses are more efficiently simulated using two-replica
cluster algorithms is the smaller fraction of sites in the two largest clusters. We have carried
out simulations on the same bond diluted Ising spin glass studied by Jörg [24, 25]. This
model has 55% of the couplings set to zero and 45% set to ±1. Near the phase transition,
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Fig. 4 Average number of
doubly occupied wrapping
Fortuin–Kasteleyn clusters,
wTRFK vs. β for the 3D EA
model

Fig. 5 Same as Fig. 4, magnified
near the TRFK percolation
transition

we find that only 87% of the sites are contained in the two largest clusters instead of the
96% found in the undiluted spin glass.

Figure 4 show the average number of wrapping TRFK clusters wTRFK as a function of
inverse temperature. The largest system size is on the bottom for the small β and on top for
the large β . As for the case of CMR clusters, the data suggests a transition at some βTRFK,p

from zero to two wrapping TRFK clusters. Although the number of TRFK wrapping clusters
is significantly less than two for all β and all system sizes, the trend in system size suggests
that it might approach two for large systems and β > βTRFK,p . Figure 5 shows a close up
of the transition region and the crossing points give the inverse percolation temperature as
βTRFK,p ≈ 0.565.

The percolation signature for both CMR and TRFK clusters is qualitatively similar in
three dimensions. In both cases two giant clusters with opposite values of the local order
parameter appear at a temperature substantially above the phase transition temperature. In
the high temperature phase, the two giant clusters have the same density and the phase
transition is marked by the onset of different densities of the two clusters. This scenario
is not unlike what is expected in the ferromagnetic Ising model for the graph defined by
satisfied bonds. On the cubic lattice in the high temperature phase we expect two giant
clusters of up and down spins of equal density. The ferromagnetic Ising phase transition is
marked by the onset of different densities of the two clusters. Figure 6 shows the largest and
second largest cluster of satisfied bonds and the sum of the two for the ferromagnetic Ising
model. The system sizes are the same as for the spin glass simulations: 63, 83, 103 and 123.
The vertical axis is located at the critical temperature. This figure is qualitatively similar to
the results for the two largest clusters in the CMR representations. In both cases, for these
system sizes, the phase transition is quite rounded in the sense that a difference in density
develops well before the transition and the transition itself cannot be identified by looking
at the size of the clusters. The difference in the density of the two clusters is thus not a sharp
indicator of the phase transition for small system sizes.
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Fig. 6 The size of the largest
cluster of satisfied bonds (middle
set), the second largest cluster
(bottom set) and the sum of the
two largest clusters (top set) vs.
β for the three-dimensional
ferromagnetic Ising model

5 Discussion

In this paper we have proposed a new percolation-theoretic approach towards understanding
the nature of the spin glass phase transition. It is based on the Fortuin–Kasteleyn [6, 7]
random cluster method (and some variants), which has been enormously useful in analyzing
phase transitions in ferromagnets, but had much less impact on systems such as spin glasses
until now (see, however, [20, 24, 25]).

There are a number of advantages to our approach. First, and most obviously, it sheds new
light on the nature of the spin glass phase transition, particularly its geometric aspects. For
example, it provides at least a qualitative explanation of why the EA spin glass on a simple
planar lattice doesn’t have broken spin flip symmetry at positive temperature (see below).
Second, it indicates a possible new framework towards an eventual rigorous proof of an
EA spin glass phase transition (at least in sufficiently high dimensions), while providing a
basis for numerical work to explore, and hopefully resolve, the issue of the lower critical
dimension. Finally, it helps to emphasize fundamental differences between phase transitions
in spin glasses as opposed to more conventional systems such as ferromagnets.

Two different representations, each involving two replicas, were used to apply an FK
type formalism—the Chayes–Machta–Redner(CMR) [13, 14] representation and the two-
replica FK (TRFK) representation previously considered by Newman–Stein [15]. It is likely
that other representations can also be used, as long as they involve the overlap of indepen-
dent replicas. While various details will differ, as described in the text, the essential—and
somewhat surprising—feature appears to be that the spin glass transition coincides with the
emergence of percolating clusters of unequal densities.

Numerical results for the d = 3 EA spin glass seem to indicate that this occurs, as T is
lowered below Tc , as the breaking of symmetry in the equal densities of both doubly occu-
pied TRFK and blue CMR clusters that already percolate above the transition temperature.
For the SK model, on the other hand, what occurs just above Tc is representation-dependent:
in the TRFK representation, there is no doubly occupied percolation at all above Tc , while
in the CMR representation there are two equal-density blue clusters just above Tc , similar to
the situation in the d = 3 EA model. This difference in behavior above Tc may arise from
the peculiarities of the SK model, and a similar representation-dependence may not occur in
short-range models.

Finally, we speculate about the nature of the lower critical dimension. Our numerical re-
sults are consistent with prior studies [30, 33] indicating the appearance of broken spin-flip
symmetry in the EA model in three dimensions. If the percolation signature scenario pro-
posed here is correct for short-range models, it would help explain why there is no spin glass
transition leading to broken spin-flip symmetry on simple planar lattices: two dimensions
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does not generally provide enough “room” for two disjoint infinite clusters to percolate.
However, a system that is infinite in extent in two dimensions but finite in the third might
be able to support two percolating clusters, with unequal densities at low temperature. This
and other possibilities will be explored in future work.
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